Inference engines
Docker Model Runner supports two inference engines: llama.cpp and vLLM. Each engine has different strengths, supported platforms, and model format requirements. This guide helps you choose the right engine and configure it for your use case.
Engine comparison
| Feature | llama.cpp | vLLM |
|---|---|---|
| Model formats | GGUF | Safetensors, HuggingFace |
| Platforms | All (macOS, Windows, Linux) | Linux x86_64 only |
| GPU support | NVIDIA, AMD, Apple Silicon, Vulkan | NVIDIA CUDA only |
| CPU inference | Yes | No |
| Quantization | Built-in (Q4, Q5, Q8, etc.) | Limited |
| Memory efficiency | High (with quantization) | Moderate |
| Throughput | Good | High (with batching) |
| Best for | Local development, resource-constrained environments | Production, high throughput |
llama.cpp
llama.cpp is the default inference engine in Docker Model Runner. It's designed for efficient local inference and supports a wide range of hardware configurations.
Platform support
| Platform | GPU support | Notes |
|---|---|---|
| macOS (Apple Silicon) | Metal | Automatic GPU acceleration |
| Windows (x64) | NVIDIA CUDA | Requires NVIDIA drivers 576.57+ |
| Windows (ARM64) | Adreno OpenCL | Qualcomm 6xx series and later |
| Linux (x64) | NVIDIA, AMD, Vulkan | Multiple backend options |
| Linux | CPU only | Works on any x64/ARM64 system |
Model format: GGUF
llama.cpp uses the GGUF format, which supports efficient quantization for reduced memory usage without significant quality loss.
Quantization levels
| Quantization | Bits per weight | Memory usage | Quality |
|---|---|---|---|
| Q2_K | ~2.5 | Lowest | Reduced |
| Q3_K_M | ~3.5 | Minimal | Acceptable |
| Q4_K_M | ~4.5 | Low | Good |
| Q5_K_M | ~5.5 | Moderate | Excellent |
| Q6_K | ~6.5 | Higher | Excellent |
| Q8_0 | 8 | High | Near-original |
| F16 | 16 | Highest | Original |
Recommended: Q4_K_M offers the best balance of quality and memory usage for most use cases.
Pulling quantized models
Models on Docker Hub often include quantization in the tag:
$ docker model pull ai/llama3.2:3B-Q4_K_M
Using llama.cpp
llama.cpp is the default engine. No special configuration is required:
$ docker model run ai/smollm2
To explicitly specify llama.cpp when running models:
$ docker model run ai/smollm2 --backend llama.cpp
llama.cpp API endpoints
When using llama.cpp, API calls use the llama.cpp engine path:
POST /engines/llama.cpp/v1/chat/completionsOr without the engine prefix:
POST /engines/v1/chat/completionsvLLM
vLLM is a high-performance inference engine optimized for production workloads with high throughput requirements.
Platform support
| Platform | GPU | Support status |
|---|---|---|
| Linux x86_64 | NVIDIA CUDA | Supported |
| Windows with WSL2 | NVIDIA CUDA | Supported (Docker Desktop 4.54+) |
| macOS | - | Not supported |
| Linux ARM64 | - | Not supported |
| AMD GPUs | - | Not supported |
ImportantvLLM requires an NVIDIA GPU with CUDA support. It does not support CPU-only inference.
Model format: Safetensors
vLLM works with models in Safetensors format, which is the standard format for HuggingFace models. These models typically use more memory than quantized GGUF models but may offer better quality and faster inference on powerful hardware.
Setting up vLLM
Docker Engine (Linux)
Install the Model Runner with vLLM backend:
$ docker model install-runner --backend vllm --gpu cuda
Verify the installation:
$ docker model status
Docker Model Runner is running
Status:
llama.cpp: running llama.cpp version: c22473b
vllm: running vllm version: 0.11.0
Docker Desktop (Windows with WSL2)
Ensure you have:
- Docker Desktop 4.54 or later
- NVIDIA GPU with updated drivers
- WSL2 enabled
Install vLLM backend:
$ docker model install-runner --backend vllm --gpu cuda
Running models with vLLM
vLLM models are typically tagged with -vllm suffix:
$ docker model run ai/smollm2-vllm
To specify the vLLM backend explicitly:
$ docker model run ai/model --backend vllm
vLLM API endpoints
When using vLLM, specify the engine in the API path:
POST /engines/vllm/v1/chat/completionsvLLM configuration
HuggingFace overrides
Use --hf_overrides to pass model configuration overrides:
$ docker model configure --hf_overrides '{"max_model_len": 8192}' ai/model-vllm
Common vLLM settings
| Setting | Description | Example |
|---|---|---|
max_model_len | Maximum context length | 8192 |
gpu_memory_utilization | Fraction of GPU memory to use | 0.9 |
tensor_parallel_size | GPUs for tensor parallelism | 2 |
vLLM and llama.cpp performance comparison
| Scenario | Recommended engine |
|---|---|
| Single user, local development | llama.cpp |
| Multiple concurrent requests | vLLM |
| Limited GPU memory | llama.cpp (with quantization) |
| Maximum throughput | vLLM |
| CPU-only system | llama.cpp |
| Apple Silicon Mac | llama.cpp |
| Production deployment | vLLM (if hardware supports it) |
Running both engines
You can run both llama.cpp and vLLM simultaneously. Docker Model Runner routes requests to the appropriate engine based on the model or explicit engine selection.
Check which engines are running:
$ docker model status
Docker Model Runner is running
Status:
llama.cpp: running llama.cpp version: c22473b
vllm: running vllm version: 0.11.0
Engine-specific API paths
| Engine | API path |
|---|---|
| llama.cpp | /engines/llama.cpp/v1/... |
| vLLM | /engines/vllm/v1/... |
| Auto-select | /engines/v1/... |
Managing inference engines
Install an engine
$ docker model install-runner --backend <engine> [--gpu <type>]
Options:
--backend:llama.cpporvllm--gpu:cuda,rocm,vulkan, ormetal(depends on platform)
Reinstall an engine
$ docker model reinstall-runner --backend <engine>
Check engine status
$ docker model status
View engine logs
$ docker model logs
Packaging models for each engine
Package a GGUF model (llama.cpp)
$ docker model package --gguf ./model.gguf --push myorg/mymodel:Q4_K_M
Package a Safetensors model (vLLM)
$ docker model package --safetensors ./model/ --push myorg/mymodel-vllm
Troubleshooting
vLLM won't start
Verify NVIDIA GPU is available:
$ nvidia-smiCheck Docker has GPU access:
$ docker run --rm --gpus all nvidia/cuda:12.0-base nvidia-smiVerify you're on a supported platform (Linux x86_64 or Windows WSL2).
llama.cpp is slow
Ensure GPU acceleration is working (check logs for Metal/CUDA messages).
Try a more aggressive quantization:
$ docker model pull ai/model:Q4_K_MReduce context size:
$ docker model configure --context-size 2048 ai/model
Out of memory errors
- Use a smaller quantization (Q4 instead of Q8).
- Reduce context size.
- For vLLM, adjust
gpu_memory_utilization:$ docker model configure --hf_overrides '{"gpu_memory_utilization": 0.8}' ai/model
What's next
- Configuration options - Detailed parameter reference
- API reference - API documentation
- GPU support - GPU configuration for Docker Desktop